Preparation of Optically Active $(4a\alpha,8a\beta)$ -Octahydro-4a-methyl-8-methylene-2(lH)naphthalenone, a Key Intermediate for the Enantioselective Synthesis of
Eudesmane Sesquiterpenes

Masanori UTAKA, Yasuyuki FUJII, and Akira TAKEDA*

Department of Synthetic Chemistry, School of Engineering,

Okayama University, Tsushima, Okayama 700

The titled optically active methylene ketone was prepared in 45% ee from 3-methyl-1,2-cyclohexanedione by use of a novel asymmetric Michael addition with (R,R)-(-)-2,3-butanediol as chiral auxiliary.

The first total synthesis of eudesmane sesquiterpenes 1 demonstrated by Marshall et al. 1) in 1965 included the titled racemic methylene ketone 2 as the key intermediate which was prepared from 2-methylcyclohexanone and methyl vinyl ketone via an enone 3. This method has been accepted widely 2) and Wijnberg et al. have succeeded in improving the functional group transformation from 3 to 2. 3) An important problem is, however, the fact that the key intermediate 2 has never been obtained in an optically active form. It seems very difficult to conduct an asymmetric Michael addtion between the enolate of 2-methylcyclohexanone and methyl vinyl ketone.

We introduce here a novel method for the preparation of 2 by use of 3-methyl-1,2-cyclohexanedione, which is simple and is capable of producing the optically active form. The reaction sequence is shown in Scheme 1.

2-Methylcyclohexanone was converted easily to the enol of 3-methyl-1,2-cyclohexanedione (4) in 75% yield according to the method reported. Acetalization of 4 with (R,R)-2,3-butanediol (1.15 equiv.) was achieved selectively by refluxing in benzene with a minimum amount of p-TsOH to give 5 in 90% yield. The α -keto acetal 5 dissolved in NaOEt(0.1 equiv.)/EtOH reacted with methyl vinyl ketone (1.5 equiv.) at -15-5°C for 23 h to give the annelation product 6' in 43% yield and the starting 5 in 32% recovery. Then 6' was treated with aqueous HCl to give enedione 6 in 69% yield. The asymmetric Michael addition was carried out at various temperatures as shown in Table 1.

The configuration of the carbon-4a was determined as R after conversion to ketone 7 ([α]_D -17° (c 0.8, CHCl₃)) (lit.⁶⁾ [α]_D +33° (c 1.14, CHCl₃) for the S configuration), which is in agreement with the stereochemistry of asymmetric induction presumed in Fig. 1. | The enedione 6 was transformed to 2^{7} ([α]_D -23.9° (c 1.17, CHCl₃)) in 56% yield according to the sequence shown.

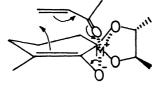

This is the first asymmetric synthesis of optically active 2, though the 8 ee remains to be improved. Further elaboration of the asymmetric induction is now in progress in our laboratory.

Table 1. Asymmetric Michael Addition of $\alpha-Keto$ Acetal 5 with Methyl Vinyl Ketone Leading to Annelation Product 6' and Enedione 6a)

		<u>6</u> '			5	<u>6</u>			
Temp/°C	Time/h	Yield/%	[α] _D /	° (c)b)	Recovd/%	Yield ^c /%	[a] _D /°	(c)b)	ee/%d)
25	2.5	78	-5.4	(1.00)	12	83	+24.0	(1.15)	30
- 5 15	23	64	-5.0	(1.21)	19	69	+34.7	(1.17)	42
-155	23	43	-4.2	(1.01)	32	69	+39.0	(0.97)	45
-1510	48	29	-5.4	(1.03)	39	75	+35.1	(0.81)	42

a) Methyl vinyl ketone 1.5 equiv.; NaOEt(0.1 equiv.)/EtOH. b) In CHCl $_3$. c) The yield for $6 \hookrightarrow 6$. d) Determined by 1 H NMR using the signal of =CH- with Eu(hfc) $_3$.

Fig. 1. The asymmetric induction in Michael addition. The (R) configuration is formed.

References

- 1) J. A. Marshall, M. T. Pike, and R. D. Carroll, J. Org. Chem., 31, 2933 (1966).
- 2) C. H. Heathcock in "The Total Synthesis of Natural Products," ed by J. Apsimon, Wiley, New York (1973), Vol. 2, Chap. 2.
- J. B. P. A. Wijnberg, J. Vader, and A. de Groot, J. Org. Chem., <u>48</u>, 4380 (1983).
 J. B. P. A. Wijnberg, G. Jongedijk, and A. de Groot, Ibid., <u>50</u>, 2650 (1985).
- 4) M. Utaka, S. Matsushita, and A. Takeda, Chem. Lett., 1980, 779.
- 5) For the Michael addition of 1,2-cyclohexanediones, see M. Utaka, Y. Fujii, and A. Takeda, Chem. Lett., 1985, 1123.
- 6) B. Riniker, J. Kalvoda, D. Arigoni, A. Furst, O. Jeger, A. M. Gold, and R. B. Woodward, J. Am. Chem. Soc., 76, 313 (1954).
- 7) The IR and ¹H NMR spectral data were identical with those reported in Ref. 1.

(Received April 18, 1986)